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Abstract

Widths of transfer zones between stepping normal faults obey power-law scaling relationships, probably from widths of millimetres to tens

or hundreds of kilometres. Relay ramp widths in the Mesozoic sedimentary rocks of the Somerset coast obey a power-law up to ,50 m,

above which there is a censoring effect caused by the width of the wave-cut platform. A structural map of the British Isles indicates that

transfer zones obey a power-law up to widths of at least 250 km. This indicates that normal faults can interact over tens or hundreds of

kilometres, especially where transfer zones occur between stepping half-grabens. Interaction is therefore another aspect of faulting that obeys

fractal behaviour.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A transfer zone is an area of deformation and bed tilting

between two normal fault segments that step in map view

(Fig. 1; e.g. Morley et al., 1990; Peacock et al., 2000a). A

step is an area of interaction between two sub-parallel, non-

colinear faults, the term being synonymous with overstep

(e.g. Biddle and Christie-Blick, 1985), jog (Sibson, 1989),

offset, overlapping faults and stepover (Aydin and Nur,

1982). Morley et al. (1990, fig. 1) define synthetic transfer

zones and conjugate transfer zones, in which two stepping

normal faults dip in the same and opposite directions,

respectively. Synthetic transfer zones are synonymous with

relay ramps (Fig. 2), which occur between normal faults that

dip in the same direction (Goguel, 1952; Larsen, 1988;

Peacock et al., 2000a). The term relay ramp is used here for

the small structures on the Somerset coast (Fig. 2a), and

synthetic transfer zone is used for larger, basin-bounding

structures (Fig. 3a). Relay ramps have been described over a

wide range of scales (Peacock and Sanderson, 1994, fig. 14),

from millimetre-scales (Schlische et al., 1996) to ,100 km

across (Peacock et al., 2000b). Morley et al. (1990) divide

conjugate transfer zones into convergent- and divergent-

transfer zones, in which the stepping faults dip towards or

away from each other, respectively. Large conjugate

transfer zones, in the form of stepping half-grabens, can

represent fault interaction over even larger distances than

relay ramps (Fig. 3a). For example, the Eastern and Western

branches of the East African Rift step by ,400 km (Nelson

et al., 1992, fig. 2), and Castro (1987, fig. 4a) shows an

,400 km wide conjugate transfer zone that existed between

Brazil and Congo before opening of the South Atlantic.

Interaction and transfer of displacement between step-

ping normal faults is indicted by tilting of bedding in a

transfer zone, high displacement gradients near interacting

fault tips (Peacock and Sanderson, 1991), and by connecting

faults that cut across a transfer zone (Peacock et al., 2000a).

Tchalenko (1970) shows that the geometries and

mechanics of microscopic fault zones closely resemble

those of continental scale fault zones. Faults are therefore

described as being self-similar or scale-invariant, with the

geometry at one scale being very similar to the geometry at

any other scale. The development of the concept of fractals

(e.g. Mandelbrot, 1967, 1982; Turcotte, 1990) has provided

a method for describing the self-similarity of different scales

of faults. For example, the power-law scaling relationship of

fault displacements is given by N ¼ cU2D, where N ¼

number of faults with a displacement greater than U, c ¼ a

constant, and D ¼ the power-law exponent (e.g. Childs

et al., 1990; Scholz and Cowie, 1990). The power-law

scaling relationship for fault displacements has been used to

estimate the numbers of faults above and below the scale of

resolution of a particular survey, and hence to estimate the

total fault-related extension or contraction in a region (e.g.
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Marrett and Allmendinger, 1992; Walsh and Watterson,

1992). Other examples of the self-similarity of faults include

fault trace lengths (e.g. Villemin et al., 1995) and the ratio of

fault trace lengths to maximum displacements for a fault

population (e.g. Cowie and Scholz, 1992; Dawers et al.,

1993). Note, however, that it is possible some fault

populations show non-fractal (e.g. negative-exponential,

log-normal, etc.) size–frequency distributions for displace-

ments or trace lengths, which cannot be accounted for by

sampling biases of a fractal population (e.g. Nicol et al.,

1996).

An (1997) discusses the distances over which strike-slip

faults may interact, and shows that linkage usually takes

place when the distance between two faults, measured

normal to their traces, is ,10% of the combined length of

the two faults. Similar results are found by Acocella et al.

(2000) for normal faults in Iceland. There also tends to be a

characteristic relationship between the lengths and widths of

the zones between interacting faults. For example, Acocella

et al. (2000) shows that the length to width ratios of step

zones between extension fractures and between normal

faults have a mean value of 3.5. If fault lengths obey a

power-law, it is therefore likely that the distances over

which interaction occurs (e.g. widths of transfer zones) also

obey a power-law.

This paper describes the distances over which interaction

occurs between stepping normal faults. Data are used from

the British Isles because there are good data available from a

range of scales of normal faults. Normal faults are

excellently exposed in the Mesozoic sedimentary rocks of

the Somerset coast (e.g. Peacock and Sanderson, 1991,

1994), and these have been mapped from aerial photographs

at a scale of approximately 1:1000. Transfer zone widths

have also been measured from the Petroleum Exploration

Society of Great Britain (2000) 1:1,500,000 scale structural

map of the British Isles. Use of the British Isles has

historical significance because Mandelbrot (1967) used the

coastline of Britain to illustrate the geometry of fractal

behaviour. It is shown that the widths of transfer zones

between stepping normal faults in the British Isles obey a

size–frequency power-law ( fractal) scaling relationship.

Such size–frequency power-law scaling has also been

reported for fault displacements (e.g. Childs et al., 1990)

and fault trace lengths (e.g. Villemin et al., 1995).

2. Scaling of relay ramps on the Somerset coast

The Somerset coast contains exceptional exposures of

normal faults in Lower Jurassic limestones and shales. The

large tide range has created a wide wave-cut platform

(,100 m wide when the aerial photographs were taken),

with fresh cliffs produced by rapid erosion of the relatively

soft rocks. The structures were produced by the N–S

extension of the Bristol Channel Basin during the Mesozoic,

and by N–S contraction of the Basin in the Tertiary, during

Fig. 1. Block diagram showing the main features of a synthetic transfer zone (i.e. a relay ramp). Bedding is reorientated in the transfer zone to accommodate

displacement transfer between the stepping segments (Larsen, 1988; Peacock and Sanderson, 1991, 1994). Transfer zone width is the distance between the two

interacting fault segments, measured perpendicular to the fault traces.
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the Alpine Orogeny (Peacock and Sanderson, 1992, 1999;

Dart et al., 1995). Structures present include normal faults

(Peacock and Sanderson 1991, 1994), reverse-reactivated

normal faults (Dart et al., 1995; Kelly et al., 1999), strike-

slip faults (Peacock and Sanderson, 1995b), veins (Peacock

and Sanderson, 1995a) and joints (Rawnsley et al., 1998).

Whittaker and Green (1983) give a detailed description of

the stratigraphy of the Lower Jurassic rocks of the Somerset

coast, and of the larger faults and folds. Bowyer and Kelly

(1995) describe scaling relationships of faults and veins on

the Somerset coast, and show that normal fault displace-

ments obey a power-law with an exponent of ,0.47.

The ,6.5 km long coastline from Blue Ben (grid

reference ST120438) to ,2 km east of Lilstock

(ST187455) has been mapped from a set of vertical aerial

photographs taken from heights of ,500 m. Hundreds of

E–W striking normal faults with displacements of up to

,300 m are exposed in this area. The faults are character-

istically segmented, with excellent exposures of relay ramps

occurring (Peacock and Sanderson, 1991, 1994). These

relay ramps are millimetres to tens of metres across (Fig. 2a

and b). The widths of the relay ramps plot as a straight line

on a log–log graph of width against cumulative frequency,

so obey a power-law scaling relationship (Fig. 2c). The

lower cut-off is ,2 m, which reflects the resolution of the

aerial photographs. Smaller relay ramps occur (Fig. 2a), and

it is likely that the power-law scaling relationship extends

below the 2 m cut-off shown in Fig. 2c. Censoring (the

upper cut-off) is at ,50 m, which reflects the width of the

wave-cut platform. Larger relay ramps probably occur in

the area. Peacock and Sanderson (1999) suggest that the

Somerset coast is within a 5–10 km wide relay ramp

between basin-bounding faults that are inferred to run along

the northern edges of the Quantock and Exmoor hills. These

north-dipping faults would have hundreds of metres of

displacement.

3. Transfer zones around the British Isles

Widths of transfer zones (Fig. 1) have been measured

from the Petroleum Exploration Society of Great Britain

(2000) 1:1,500,000 scale structural map of the region

around the British Isles. A simplified version of this map is

shown in Fig. 3a. Interaction between faults is inferred by

tilting of bedding in the transfer zone, or by connecting

faults cutting across the transfer zone. In many instances,

however, interaction can only be inferred from the fault

trace geometries; interaction is inferred to have occurred

between two faults where the proposed transfer zone has a

width of less than ,10% of their combined trace lengths

(An, 1997; Acocella et al., 2000). It is acknowledged that

this inference of interaction between faults is speculative,

especially for the very largest transfer zones between

stepping rifts (listed in Table 1).

Widths of transfer zones measured off the Petroleum

Exploration Society of Great Britain (2000) map of the

British Isles have been plotted on a log–log graph of width

against cumulative frequency (Fig. 3b). They obey a power-

law scaling relationship between widths of ,10 km

(probably the lower resolution of the map) and ,250 km.

It is possible that the power-law scaling for transfer zones

Fig. 2. (a) and (b) Different scales of relay ramp exposed in Lower Jurassic

limestones and shales on the Somerset coast. (a) Photograph of an

,150 mm wide relay ramp at East Quantoxhead. The stepping faults have

maximum displacements of ,100 mm. (b) Map of a relay ramp between

south-dipping faults with maximum throws of .30 m. North-dipping

faults, mostly with ,20 m displacement, transfer displacement across the

relay ramp. (c) Size–frequency of widths of relay ramps measured between

Blue Ben and east of Lilstock (n ¼ 192). They obey a power-law up to

,50 m, with a power-law exponent of ,0.96. The upper cut-off is

probably caused by the ,100 m width of the wave-cut platform, which

means that wider relay ramps are under-sampled.
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extends above ,250 km shown in Fig. 3b. It is speculated

that there is a massive transfer zone, extending for

,1155 km between the continental margin off the west of

Ireland and the North Sea graben system. These rift systems

were synchronously active in the Mesozoic (Ziegler, 1989,

fig. 5), with a complex network of basins between. This

inferred transfer zone is too speculative, however, to be

included in Fig. 3b.

4. Discussion of scaling relationships for fault interaction

Measurements for the Somerset coast and from the

Petroleum Exploration Society of Great Britain (2000) map

indicate that transfer zone widths obey a power-law size–

frequency relationship over ,5 orders of magnitude. The

power-law exponent for the regional-scale faults (Fig. 3a) is

higher than for the smaller faults exposed on the Somerset

coast. This may reflect the longer, more complex history of

the regional-scale faults. For example, Chadwick (1993)

shows that the largest E–W striking faults on the south coast

of England were Variscan thrusts, reactivated as normal

faults during the Mesozoic and then reverse-reactivated

during the Alpine Orogeny. This greater complexity is

illustrated by the wide range of fault orientations across the

British Isles (Fig. 3a) compared with the simple ,E–W

strike of normal faults on the Somerset coast (Fig. 2).

Although large conjugate transfer zones appear to have

the same scaling relationship as large synthetic transfer

zones (Fig. 3b), conjugate transfer zones have not been

identified at the exposure-scale on the Somerset coast.

Indeed, there does not appear to be a published map or

description of a metre-scale conjugate transfer zone. It is

possible that conjugate transfer zones scale down only to

hundreds of metres wide, and there does appear to be a

breakdown in the power-law scaling of conjugate transfer

zones at ,20 km (Fig. 3b).

This fractal scaling relationship for transfer zones is

probably a consequence of fault trace lengths obeying a

power-law (e.g. Villemin et al., 1995) and faults interacting

when the distance between segments is less than about 10

times their combined trace lengths (An, 1997; Acocella

et al., 2000). The widths of transfer zones would therefore

be expected to coincide approximately with the fractal

scaling of the trace lengths of the interacting fault segments.

The data presented in Figs. 2 and 3 illustrate that fault

interaction is characteristic across a full range of scales (Fig.

4), and that faults can interact over distances as large as

hundreds of kilometres. To understand the deformation in

faulted regions therefore requires understanding of fault

interaction across a full range of scales.

5. Conclusions

Faults obey power-law scaling relationships for displace-

ment (e.g. Childs et al., 1990; Scholz and Cowie, 1990) and

for fault lengths (e.g. Villemin et al., 1995). This paper

illustrates that the distances over which faults interact, as

indicated by the widths of transfer zones around the British

Isles, also obey a power-law scaling relationship over at

least five orders of magnitude. The relay ramps exposed on

the Somerset coast obey a power-law up to widths of at least

50 m, beyond which a censoring effect is related to the

width of the wave-cut platform. Transfer zones shown on

the 1:1,500,00 scale Petroleum Exploration Society of Great

Britain (2000) map of the British Isles obey a power-law

relationship up to widths of at least 250 km. This suggests

that the largest faults can interact over tens or hundreds of

kilometres.
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